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Abstract-General connections are established between the mechanical and thermal responses of
composite materials with debondcd or impcrfcl:tly bonded interfaces. and with internal cracks or
cavities. In particular. sueh results are found for multiphase composites or polycrysta1s in which
normal and/or shear disp);tl:ement jumps may exist at interfaces or cracks. consistent with complete
debonding or with the presenl:e of a m)nlinearly elastic interphase layer. In two-phase systems with
isotropil: phases and sliding interfaces. we also recover exal:t connections hctw~..en the mechanical
and therrn;1l stress or strain fields in the phases.

I. INTRODUCTION

Ev'llu<ltion of thermoel<lstic properties of composite materials is of considerable interest.
particul<lrly in high-temper<lture ceramic systems. Although perfect bonding between the
ph<lses m<lY be desir<lblc. v<lrious types of imperfect bonding <It interfaces. as well as internal
cr<lcking m<lY exist in <lctu<ll systems. Any such dam<lge mode will cause a change in overall
stifl'ness. in loc<ll mechanical fields, <lnd <llso in the overall therm<ll expansion coellicients
<lnd in the therm<ll stress <lnd str<lin fields. It is well known th<lt in perfectly bonded systems.
the over<lll therm<ll properties can be eV<lluated in terms of phase properties <lnd mech<lnical
concentration factors (Levin, 1967). More general relations involving local fields <llso exist
for cert<lin perfectly bonded two-ph<lse systems (Dvorak. 1983. 19S6. 1990; Dvorak and
Chen. 19S9; Benveniste <lnd Dvorak, 1990<1). <lnd also for two-phase composites with
isotropic constituents and slipping interfaces (Benveniste and Dvorak. 1990b).

The present paper extends this line of inquiry, and establishes such connections for
many other d<lmaged composite m<lteri<lls. In particular, we show in the first part of the
p<lper th<lt the Levin-type connections <Ire recovered in multiphase composite systems of
arbitrary ph<lse geometry .lI1d materi<ll symmetry. even if the interfaces, or their parts.
undergo debonding which is either complete. or consistent with the presence of a very thin
nonline<lrly e1<1stic interph<lse I<lyer which permits both norm<ll <lnd shear displacement
jumps at interf~lces. In the second P<lrt, special forms of these results are found for two
ph<lse composites. Moreover. in two-ph<lse systems with isotropic constituents and slipping
interfaces. eX<lct relationships <Ire found between mechanic<ll <lnd thermal stress or strain
fields in the ph<lses. This is accomplished with the help of uniform strain and stress fields
in heterogeneous media (Dvor.tk, 1990; Benveniste and Dvor<lk, 1990a).

The emphasis is on evalu<ltion of geneml thermomechanical connections rather th<ln
the formukttion of micromech<lnical models. Examples of the latter may be found in other
recent references. e.g. Chen and Argon (1979a, b) : Lenc and Leguillon (1982) ; Benveniste
and Aboudi (1984); Mum el al. (1985); Benveniste .lI1d Miloh (1986); Tsuchida el al.
(1986): Jasiuk el al. (1988); Achenbach and Zhu (1989); Jasiuk and Tong (1989);
Hashin (1990). Therefore. throughout the paper we assume that the local fields caused by
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mechanical loads can be evaluated by an independent analysis. Our purpose is to provide
a general methodology for evaluation of the thermal response of damaged composites from
the various solutions of mechanical loading problems.

~. MULTIPHASE COMPOSITES

2.1. Phase and interface properties
We first consider multi phase media with N constituent phases. which may represent

such actual systems as matrix-based composites or polycrystals. and focus our attention at
a sufficiently large representative volume which has the same effective properties as any
other volume of such or larger size. If a matrix is present. then it will be denoted by r = I.
and r = 2.3..... N will represent the reinforcing phases. All phases are linear thermoelastic
solids. their constitutive relations are

(1, = L,£, +1,00 , £, = 1\1,(1, +m,(}n. r = 1.2..... S. ( I )

where (1" £" L,. t. (In denote. respectively, the stress, strain. stiffness. thermal stress tensors
and a uniform temperature change. M, = L; I and m, = -M,I, are the compliance and
thermal strain tensors.

Damage in composites may be due to internal cavities or cracks. and imperfect bonding
between the phases. Imperfect bonding may be regarded in terms ofa thin interphase region
of certain stiffness, or as interface cracks ,1Ild cavities. The interface between phases rand
.I" will be n:presented in this paper by an idealized geometrical surface of zero thickness.
Neverthekss. it will he convenient to think or these interfaces as two-sided surfaces S" and
5,." adjacent to phases r and .I" respectively; such a notation witl also help symmetrize many
expressions in the paper. The displacement Ikld mayor may not he discontinuous across
sudt interfaces. Should a cavity or a crack develop between the phases rand .1". the surf:lce
of that vacuous zone will be denoted hy S" and S". The surface S" will he that in contact
with phase r, and .\'" that in contact with phase.l", (sec Fig. Ia). The phases may also contain
internal cracks or cavities. The surface of such a defect which is internal to phase r will be
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Fig. I. (a) Inh:rface oetween two rha~e~ rand .1'. (0) Possiolc dlllice of coordinate systems at
interfaces.



denoted by S". (n the case of a thin crack in phase r. it may be convenient. though not
necessary. to consider the dl.'Composition S" == S,: u S,~ where S,: and S,-, denote the upper
and lower surfaces of the crack.

At any point on the interfacial surface between phase r and phase s. it will be convenient
to define the unit normals n'''' = _n,n, from phase s to phase r. At the surface ofa cavity
or crack which is in contact with phase r we will define the normal n'''' from phase r into
the vacuous lone.

The displacements and tractions. together with the unit normals described above at
any point x of the interfacial surface. will be described in a single Cartesian coordinate
system. This Cartesian system can in principle be fixed in space. but can also be conveniently
chosen at the generic point x on the interface. (n the latter alternative. we may choose either
(n''''. p. q) or (n''''. p. q) where p and q describe the tangential unit vectors at the interface
(see Fig. I b). For a cavity or a crack. we will choose (n''''. p. q). With no loss of generality.
we thus adopt the coordinate system (n''''. p. q). where in the case of a pore or a crack there
is r = s.

At any generic point x of the interface. let us define the traction vcctor exerted from
phase r to phase s as t'''l. and from s to r as th" :

t'''' = (/'''1 I'''' I'''')l t'''' == (I''') II'" I'''')T" .. P .. If '" If .. I' "fl • (2)

We note th~lt both arc expressed in the coordinate system (nl"l. p. q). Regardless of thc
nature of the bond, t''') must be in equilibrium with th'l. thus

(})

For a generic point x' at a surl:lce S" of a cavity or crack adjacent to phase r. it follows
that

tifT' == (I'''' (,rrl Ilrr l)1' == ()
n .. I' , il ' (4)

where the quantities arc described in the coordinate system (n''''. p. q) ddined <lbove.
Displ<lcement vectors <It <lny point x of the interf<lce arc ddined <It e.leh side and

expressed in the coordinate system (n'''I. p. (I) .IS:

(5)

the dilference or jump in those displacements across the interface will be denoted by

(6)

These conventions permit us to deline the following types of interface bonding that
will be of interest in the sequel. A flerfeclly hOl/ded interf'lce which docs not contain <lny
interphase layer is characterized by the relations

(7)

At a deh01/Cled illler/lice which is actually considered a cavity or ~I crack.

(8)

Our interest will frequently focus on ill/perfeclly honded illlerjllces. which allow non
vanishing relative displacements to exist together with nonzero tractions. The implication
is that the displacements and tractions arc related in a certain way at cach instant ofloading.
as if the interfaces were connected by a very thin layer or intcrphusc material. We limit our
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attention to systems where such relationships, or the properties of the interphase. are
described by the incremental form

d[II,) = AI" (to) dt"

d[up) = Mpp(to)dtp+ Mpq(to)dtq,

d[lIq] = Alqp(to)dtp+ Mqq(tO)dtq. (9)

at each current magnitude tfJd = - tl'Sl = to of the interface traction; for simplicity we have
denoted (dt" dtp• dtq) = (dt~").dt~").dt~'). The M,p, with:t. f3 = n. p, q. are the instan
taneous "compliances" of the interface. or interphase layer. and are assumed to be rep
resented by smooth, continuous functions. that satisfy the symmetry condition AI,p = Mp,.
Since the interphase is assumed to be very thin, the contributions of the terms M,pdtp,
M,qdtq. etc.. to d[u] are considered to be insignificant and are neglected.

The imperfectly bonded interface that can be represented by (9) includes nonlinearly
elastic coatings, and also interfaces which are weak in shear but perfectly bonded in the
normal direction. in which case AI" (to) = O. and [II,] = O. The representation (9) may imply
an interpenetration in the normal displacement components II, across the idealized interface
in the case of a normal compressive traction. However. since we limit ourselves to small
strains. and since these interfaces do in fact represent interphase regions with a certain
thickness. such interpenetration can be accommodated by compression of the interphase.
Interfaces that exhibit frictional contact. perfect bonding, or complete debonding arc not
represented by (9). Indeed. interface friction would relate the tangential components of the
traction to the compressive normal component when [II,) = O. but without reference to the
magnitude of [ul. although the ratio of t;:'1 to t,~") may determine the direction of luI.

2.2. 1,lIcII/fields
Let a representative volume ofa composite material be subjected to an overall uniform

stress iT. or strain ii, and to a uniform temperature change 00 , In particular, we select the
overall thermomedwnical loading on external surface S as

u(S) = cox. O(S) = Ou. (10)

so that ii = ell. and examine its effect on local strain ,lOd displacement fields in the phase.
We assume that the local fields can be evaluated by an independent analysis of each

specific system. Examples can be found in the references listed in the Introduction. In
systems which undergo progressive debonding. i.e. involving changes in the size or location
of the interfaces (8). and progressive deformation induced at the imperfectly bonded
interfaces (9). such analysis may need to be performed at many different points of the
prescribed loading path leading to the current state (10). In any event. the current local
strain and displacement fields C.ln be denoted by

(II)

The displacement and temperature increments on the outer surface S of the representative
volume arc ilH:rementally specified for a changc in the temperature or strain. as

or

u(S) = l:"X. O(S) = 0o+dOo

u(S) = (80 +d&o)x. O(S) = 0o,

(12)

( 13)

The resulting incremental strain and displacement fields to be superimposed on (II) are:
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(14)

( 15)

where ar(x; Bo. 00). dr(x; Bo. 00) are certain thermal influence functions. and Ar(x; Bo. 00),

Dr(x; Bo. 00) are the mechanical influence functions. Their dependence on 80 and 00 is the
consequence of possible pr.ogressive debonding and/or nonlinear behavior of the interfaces.

2.3. Ol'eral/ properties
The overall average strain in the presence of imperfect bonding is the sum of average

phase strains. and strains that may be contributed by the relative displacement at the
interfaces as well as by the presence of cavities and cracks. A derivation for two-phase.
matrix-based composites has been given by Benveniste (1985). Here we present a more
general result that applies to multiphase composites. not necessarily matrix-based, which
mav contain cracks and cavities.

Using the notation introduced in Section 2.1. we show in Appendix A that the average
strain in such a composite is given by

N .v iV

;: = L Crg(') - L L J",
r- I r ... I ,f- I

( 16)

where Cr denotes the volume fraction of phase r. N is the number of phases. ilrl is the
average strain within that phase. and the second order tensors Jr. arc given by:

It is noted here th~lt thinking of the interface surface between the phases rand s as two
sided surl~lces Sr. und S" allows a symmetrical representation of eqns (17) I and (17h.

It is often convenient to introduce concentration factors that reflect the presence of
damage. In particular. under the load increments prescribed in (12) and (13). one finds
from (14). (15) und (17):

dJ" = Fr.(en. On)den+ f,,(en. On) dOu. r, s = 1,2, ... , N, ( 18)

where the concentrution l~lctor tensors Fr. and f" arc related to the D, and dr influence
functions in (14)~ and (ISh as:

F" = 1_ f (Dlrl(x)"lr.) +DI,) (x)n lr.• ) dS
"kl ., V. ,k/' J Jkl , r...

- S ..

f " =1.. f (dl,)(x)"lrl) +(flr, (x)nl"l) dS
'1 ., V. I' J J • r.• •- .\.. ( 19)

The concentration factors F., and f" related to dJ., are described simply by inter
changing rand s in (18) and (19). Together with the related factors defined in (14) and
(15).they facilitate the description ofoverall properties of the damaged composite materials.
We refer again to the representative volume of a composite material which is subjected to
overall uniform stress ii. or strain i and to a uniform temperature change 00 , Since the
overall response is not necessarily linear. it is sought in the incremental form
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dO- = L(i. Oo)di+l(i. 00 ) dOo.

di = 'l(i.Oo)do-+m(i.Oo)dOo. (20)

where L(i. ( 0 ) and I(i. 11 0 ) are the instantaneous stiffness and thermal stress tensors which
depend on the current overall strain and temperature. The :\1(i. eo) and m(i. ( 0 ) are the
corresponding compliance and thermal strain tensors.

These effective properties can be determined once the concentration factors a,. A,. the
volume averages of the influence functions a,(x; 8 0 • 00 ). A,(X; 80' eo) introduced in (14)
and (15). and the tensors F". f" defined in (19) are known. Equations (14),. (IS),. (16),
(18) and (20) 2 readily provide the following expressions for L and I :

v v ,\'

L(80.1J0) = L1+ L: (',( L, - L, )"\,(80, 00) + L, L L: F,,(80.00)
r=_ r=1 ~=l

,\' V \ ,v

1(80.00) = L (',1,+ L c,(L,-L 1)a,(80.00)+L, L: L: f,,(8 n ,Oo). (21)
r=1 r=~ ,.=I.f=1

Similar equations can be obtained for M and m.

2.4. Erl//I/l/lioll (1/1 l/1Ie! III

In his (1%7) paper. Levin found an expression which relates the thermal stress tensor
I to the mechanical concentration factors ,.\, of the phases and to phase thermal vectors I,.
in an undamaged composite with perlcctly bonded interfaces. An analogous relation exists
between the overall thermal str'lin tensor III and the stress l.:oncentration fal.:tor H, and phase
tIH:rr11al strain tensors Ill,. Under certain conditions, a similar formula can be derived for
composites with imperfectly bonded or partially debonded interfaces defined in (7) (9).

The derivation presented here will usc the reciprocal theorem. although a similar result
follows from a modified prinl.:iple of virtual work for composites of this type (Benveniste.
IlJX5). For completeness. we present in Appendix B a derivation of the reciprol.:al theorem
which accounts for the cf1cct of applied eigcnstrain fields and imperfect interfaces.

Suppose that the composite has been loaded to some current known state (co, ao. ( 0 ).

where the extent of partial and/or wmplete interface debonding has been evaluated sUl.:h
tlwt all l.:ocl1kients in (9) and the lllech'lnic.d inl1uenl.:e funl.:tions A,(x; Cn. °0 ), 8,(x; co.
Oolt and D,(x; 1:0 • 00 ) in ( 15) are known together with the instantaneous overall stifrness
Land l.:olllpliance M = L '. In this current state. we apply two separate load increments
(') and (") such tha t there is no dlange in the type of interface bonding (7)-(9) on S". First.
an overall uniform stress increment dao is applied at the l.:urrent temperature O(S) = 00 ,

According to (15). this will cause the strain and displacement fields in the phases

(22)

(23)

Next. the overall temperature is changed from On to 0;; at fixed overall stress an, This
will cause the local thermal strains Ill, dO" whil.:h l.:an be expressed as

dj,; = - L,IIl, dO;; = I, dO;;.

as well as the displacement fields denoted by

(24)

tThe inlluence fun.:tion n.Cl(: £". II,,) relates the stress increment dtT" 10 the local field da,. in the same way
as the function A. relates the strains in C15).
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du; = d,( X: £0.00) dO'~. (25)

Let us now use the reciprocal theorem given in (88) in its incremental fonn. Note that
dF; = dF;' = d;.;, = dt;' = O. and write

where we have used the notation SIO' to denote all interfaces between the phases r in volumes
V,. Of course. at surfaces in contact with vacuous zones. the tractions and thus these
integrals vanish.

The first integral on the left-hand side is. by definition. the scalar product of the overall
stress increment with the strain increment dlT;;' dl:;',. A substitution from (9) reveals that the
two integrals over SlOt contain terms dt' M IOt dt" and dt" l\I'~1l dt' = dt'l\I'~1l dt". respectively.
Since (9) was assumed to admit only interfaces where M"11 = M'~H' those integrals are equal
and cancel each other. At locations where the interface is perfectly bonded ([duJ = 0). or
completely debonded (dt = 0). both integrals vanish.

The remaining two integrals over Vare rewritten with the help of (22)- (24). One form
IS

(27)

Since M, = M: = I., I. the right-h:lIld side integrand can be shown to be rewritten as
da;,U:m, dO;;. Thus (27) can be solved for the overall thermal strain tensor III as

m(11 0 .00 ) = ±{r U:(:\;:11 0.00)I1\,dll }.
r- 1 JI,

An analogous :lOalysis yields the expression for the overall thermal stress vector

I(co.oo) = ±{f. A:(X:co.O,,)I,dV}.
, ...:..1 l,

Taking the phase volume averages of the inl1uence functions over V, gives

.v \

11I(11 0 .° 0 ) = L c,R: (11 0 .00 )11I,. 1(11".0 0 ) = L (',A: (c".Oo )I,.
r- I , .. 1

(2X)

(29)

(30)

This result is form:llly identical to that found by Levin (1967). however. the mechanical
concentration factors entering here are those of the damaged composite. and as such
they depend on the current geometry of the imperfectly bonded or debonded interfaces.
Therefore. (28) -(30) should be utilized in conjunction with an incremental solution of a
thermomechanical loading problem for the damaged composite m:lterial. Of course. such
a solution may provide the overall strains. and (30) can then identify the purely thermal
contribution, However. if the geometry changes ce:lse at a certain load level. e.g. because
the imperfectly bonded interfaces have separated. then the mechanical concentration factors
remain independent of further load or temperature changes. Once these become known
from the solution of a mechanical loading problem for the damaged composite. the above
relations can be used to find the overall thermal properties.
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3 TWO-PHASE COMPOSITES

3.1. Ocerall properties
First. consider some specific forms of the above results which apply to two-phase

composite systems. Suppose that r = I denotes the matrix and r = 2 a reinforcing phase.
Then the general expressions (21) for the overall stiffness L can be rearranged as:

L(sO, tIo) = L, + cz(L z - L, )Az(so. 00 ) + L, A(so. 0 0 ).

I(so. tIo) = c,l, + czlz + cz(L z- L, )32(S,). (1)) + L 13(So. tIo). (31 )

where the A and a tensors reflect the effect of damage. and the A z• 3 z are the mechanical
concentration factor tensors of the damaged composite. The overall average strain (16)
now becomes

(32)

where i, are the average strains in the constituents. and J is given by the double sum in (16)
taken over r. s = I. 2. From the above representation. it is seen that

(33)

For two-phase composites. an alternative expression for the 1(&0' ( 0 ) in (31}z can be
obtained as follows. First write (32) in incremental form. and recall that under (12) and
(13) de = dc o• Next. make use of (14) I. (15), and (33) to obtain

C I A, (co. ( 0 ) +czA z(eo. Ou) - A(co. ( 0 ) = I. c l:a 1(1:0 • ( 0 ) + (,z:lz (co. ( 0 ) - a(eo. ( 0 ) = O.
(34)

where' is the fourth order unit tensor. Finally. write (30) z for two-phase media as

(35)

One can now solve for A:(eo• 00 ) and AI (eo. 00 ) from (31) 1 and (34) I. and substitute them
into (35) to find

'(eo.Oo) = (L(eo.Oo)-Ld(Lz-Ld "(1 2 -1 1)

+1,+AI'(1l0.0u){I,-L,(L z-Ltl '(lz-I,»-. (36)

The diagonul symmetry of the L tensor has been invoked in the above derivation.

3.2. Isotropic constituents lI'itll slipping interfaces
We now consider a two-phase system which admits connections between mechanically

and therm'llly induced pointwise fields that are not available in multiphase composites. The
constituents arc both isotropic. and the displacements of the interfaces arc limited to
nonlinear slip, i.e. M nn = 0 in (9). Furthermore. the individual phases arc assumed to
contain no cracks or pores. In this particular system, the influence functions a,(x; eo. 00 )

and d,(x; eo. 00 ) arc uniquc1y determined by their mechanical counterparts A,(x; eo. 00 )

and D,(x; eo. 00 ). respectively. Also. the general formula (36) can be reduced to a particularly
convenient form. The specific results are:

&,(X;80.00) = {1-A,(X;8o.0o)}(L 1-L2)-1(1 2-11).

d,(X;80.00) = {x-D,(x;80.00)}(L , -L2)-'(l z-II)'

a= -A(L,-Lz)-'(lz-Id. 1=1,+(L-L,)(Lz-Ld-'(lz-I,). (37)
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The validity of these relations will now be proved using the concept of incremental
uniform fields in heterogeneous media introduced by Dvorak (1986). The composite is
subjected to the boundary conditions (10). has the local fields (II), and the goal is to
evaluate its response under a temperature increment deo from the current state, as in (14).

Superimpose on (10) the incremental loads de and dO o :

u(S) = SoX +dex. O(S) = 00 +dOo. (38)

The dOo is given but de is not known; it is to be determined such that together with deo it
creates a strain field de. and a stress field dO- which are both uniform in the entire rep
resentative volume. The desired magnitudes of de and dO- can be readily determined from
(I). Write the local incremental fields in both phases. make them equal. and evaluate the
desired strain

(39)

An analogous derivation (Dvorak. 1990) for a composite under overall uniform stress
shows that a uniform stress field dO- can coexist with a tcmperature change dOn if

dO- = (M, -M~)-I (m~ -ml) dOo.

In the present system with isotropic constituents, both de und dO- arc hydrostutic.
therefore. in the absence of normal interfuce displacements, the ubove increments cause
only normul und continuous tractions ut ull interfaces. Ofcourse, this ulso prevents interfuce
slip, und the composite responds to the incremental louding (3R) us if the interfaces were
perfectly bonded.

To restore the original boundury conditions (12). the uuxiliury struin di. must be
removed. This is accomplished by changing (3g) to

(40)

The incrementul fields produced by the loading/unlouding sequence (38) und (40) ure

where de is to be substituted from (39). Note that (40) and (12) are identical, hence a,(x;
eo, 00) and d,(x; elh Vn) can be extractcd by compuring (14) with (41). This leads to the
expressions (37) I and (37h.

To recov-.:r (37»). recall thut in the present derivution we rule out vucuous zones, hence

(42)

with F" und r,. being given in (19). A substitution from (37h to (19)!. together with (19) I

und (42). reudily provides (37»).
Finully, u substitution of (37), with r = 2. und of (37) J into (31 h gives

l(eO,Vu) = ell, +c!l! +c!(L! - Ld(I-A!)(L I - L!) I (I! -II) - L,A(L, - L!)-' (I! -Id.
(43)

Solving for A2 in (31). and substituting into (42) then provides (37)4'
Recall that the thermal stress tensor I for two-phase composites with anisotropic

constituents is given by (31h or (36), and for systems "lith isotropic phases and slipping
interfaces by (37)4' These relations were arrived at by two entirely different approaches,
hence it remains to be shown that they are equivalent under similar circumstances.



For isotropic constituents there is:

(/1)" = 10".

(L I I"" = {h)"0,, +:.( ,)"0,, + 0"6,, - ~()" ,\,).

(L 2 - L I ),.,,,:,, ~(5r\(jm" + ~(£5,.,,,(),,, + ()",{)1ft/ - ~(jr\Jm,,)~

(44)

where 1. {J. J. ~. ~. i. arc constants. Writing A I in indicia I notation and carrying out the
summation in (36) according to H4) shows that the tensor AT enters only as (AT)pqw

Moreover. the continuity of normal displacements at 5: 1, which was assumed in the above
derivation of (37)~. implies that according to the definition of the A tensor. in (31 )-(33).
A"kl = 0, or in fact (A1),,,,,, = O. This leads to the conclusion that (36) indeed reduces to the
form (37)~ when the phases are isotropic and the interfaces may experience only shear
displacements.
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AI'PENDIX :\

Elluation (16) will he derived in this arrcndi.x, The considered Tllultiphase ellmposite may contain pores and
cracks at arhitrary loc;ltions. but need not be matrix hased. sec Fig. A I fllr a typical volume of such a composite.
To derive clln (10) it is sullit:ient to consider a three-phasc composite as in Fig. A2, Note th'lt phase "5" is in
contact !>oth with ph'lses "r" and "1''', a situation which would occur in non-Tllatrix based compositcs. The
notation in this figure is thai described in St:ctilln :!.I, Tht: derived average strain for the configuration of Fig. 1\2
can he rt:adily gencralized III llluitipha" composiles llf the lype described in Fig, A I.
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Fig. A 1. A multiphase nonmatri:\-based composite with defects.

We start by writing the average overall strain for the composite (Bem·eniste. 1985)

if" = zlvL (11,",+11,",)05.

Z917

(AI)

where 5 denotes the outsioe surface ano n the outward normal to S. The aver;lge strain in ph;Ise r can be written
as

where Gauss's oivergence lheorem has heell used.
Similarly. we can write lhe average slrain in phases.~ ano I' as follows:

"p' - I r (11"",,""'+11'/",,""')0\' + _I r (II'PI,,'/"'+II'/",,""')oS
'OJ! -il',.J~,.. , I I· .,., 2"'"].",,, r J J I po'

Fig. AZ, A three-phase composite useo in the derivation of the average strain,

(A3)
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where V. and Vp denote the volumes of phases 5 and p. respectively. The total volume V = ~'. T V,,,, Vp . !\.1 ultiplying
eqn (A2) by c. = V" V. and equation (A3), and (A3), by c, = v, v and Cr = Vp , v, respectively. and adding.
results in

(A4)

where we used the definitions in (17). A generalization of (A4) to multi phase composites provides eqn (16).
Equation (A4) or (16) reduces correctly to eqn (3) in Benveniste (1985) and (:29) in Benveniste and Dvorak
(1990b) which were written for two-phase matri,,·based composites+. To draw a parallel with eqn (3) in Benveniste
(1985), we simply note that n in that equation is given in the present notation by

(A5)

where "1" denotes the matri.\ and ''1'' the inclusion and [u;] was defined as

so that

~Ivf. ([II,!/, +[u,I/,) dS" = (J"+J,,),,.
- -\1=

(A6)

(A7)

Recalling that no vacuous zones were present in the phases in these previous works, J" = .J" = O. and it is seen
that eqn (3) in Benveniste (1985), and (29) in Benveniste and Dvorak (1990) are simply special cases of (A4).

APPENDIX 8

An extension of the elastic reciprocal theorem III the situations in which the linearly elastic body contains
interfaccs of the type described in Section 2.1 can be written as

f f " "II' f ,,, 1<' f ,,,' ,·,'.1<' f ,,,' 'n' .,<.',II,l + (,11,(.,)+ I, U j U"n+ . I, til U.l"

,- .\ .\. ""

'" f 1";'u; d I' +1(u; dS +f, I:"" u:" dS" +1.. I;"" II;" dS". (Ill)

whcre II;' arc the displacements caused by the system (, 1";: and u; arc the displaccmcnts causcd by the system I;,
F;.

Whcn distributions of cigenstresses ;.;, '" I"t)' and ;.;; '" ',,0" ;lre respeclively applied 10 the IWO systems. thc
local stress lield is given by

11;,(X) '" a;,(x) +;.;,.

a;,(X) '" L"lI(x)/;;,(x).

The field (8:2) satisHcs

a;,., + F; +;.;,., '" 0 in v,

a:,fl,+).;,", = r; 005.

a;,,,:'" +;,;,,,~nt = ':'" on S".

a;,n:,,1 + ).;,";'" = 1:'1) on S".

A similar representation holds for the double-primed system.
Define new body forces and surface tractions

(113)

(1l4)

~." = (:")-;·'/,,~"I.

~ = ('-)"/"1'

i;'" = ,:'0 -;"'"~''' (1l5)

and rewrite (BI) with F;, F7 replaced by f;. f;'. t;. 17 by i;. i;: etc.
Consider first the right-hand side of (BI) rewritten as described above and substitute from (B4) to find

t Note that there is a misprint in the definition of J in eqn (30) in Benveniste and Dvorak (1990). The term V
should be replaced by V1 in that equation. as well as in eqns (36) and (47) of that work. Therefore. as we show
in (A7). the correspondence between the J term in Benveniste and Dvorak (1990). and the J ". J 2' terms in the
present paper is: C2J = (J 11 +J 11)'
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f. r:-,u,'d/' L f '. 'd/' f . '" 'dS \" ("", '" '''') '" dS r (,,,,- '. '''') '" dSr. - I,,,.,U, .... (I, -I,,,n, lu, -, I, -I,,,n, u, _.... I. I, -I,,,n, u, '"
,\ .. ' " .. ~'"

Manipulating the se':l'nd term in (Bh) through the divergen.:e theorem. one finds

f '" 'd/' J".", dS I' ." '" ''''dS f ." '" ""dS f '" ,dFI."U. = J'_'1u,n, + I'I'U/ n, ~1+ I.:,U, n, ,,.- ,_ )'I,U',1 •

, ,- .,;,"., '""

1919

(B6)

(B7)

Moreover. II;, = I:;, ... ,,);,. and sin.:e i.;', = i.;;. (');, = -('J;,. it follows that when (B7) is substituted into (B6). some
of the intecrals on Sand S.. .:ancd out.

A similar pro.:edure applied t,l the left-hand side of (B I) yidds the form of the reciprocal theorem which is
v'alid under inh:rnal ddecls at S" and in the presen.:e of eigenstrains i." = /,,0 :

f f "f '.... • .. - •.".. 1". 1"1' 1'''- Ill-F,II,dl + 1,II,dS- j I",/."dl... I, II, dS,,+j I, II, dS"
I Ii ",,' Ii" Ii"

f f " f '.... '" ~ ..... I''''" 1'. l,.f' (II

= F,II,dl + l'II'dS-J I"/'I dl + . I, u, dS,,+J I, II, dS".
l S I-~.. S...

(B8)

It is inh:n:~ling III mIte thilt iIlth,'ugh lh.: linl'arily of the l'on~titutive lilW in the phases has bel'n a~sumed in (B I)
and (BX). the wn~litutive law "f the inlerfaces doe~ not e"pli.:itly enler in thl~ ~uations, In other words the
relation between the interface lracli,lns and the resulting inlerfa.:e displacements have not e,plieitly bl-cn used in
(BX). We finally menti,'n lhat eqn (Ill') "In alsll be used for an incremental set of loads (dF;. dt;. di.;,) and (dF~

dC di.;;) whi.:h arc supcrimp,'sed on an e'isting equilibrium state of deformiltion.


